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“All truths are easy to understand once they are discovered; the point is to 
discover them.” – Galileo Galilei



The NERSC Computer Center at 
the Berkeley Laboratory

Seaborg:  6656-CPU IBM P3 system, 10 Tflop/s peak, 7.8 Tbye memory.
Bassi:  976-CPU IBM P5 system, 6.7 Tflop/s peak, 3.5 Tbyte memory.
Franklin (to be installed in early 2007): 9672 dual-core Opteron CPUs, 
100 Tflop/s peak, 77 Tbyte memory.



Computations at NERSC: 
Accelerator Physics

3D simulations (such as ORIRIS shown below) have helped 
experimenters produce 100 MeV beams with significantly improved 
beam quality.
Computations involve both dense and sparse linear algebra.
Presently using 2 million CPU-hours annually.
Future needs: at least 10 million CPU-hours annually.

Graphic:  R. A. Fonseca 
(IST Portugal), F. S. Tsung
(UCLA), and S. Deng (USC)



Climate Modeling

Characteristics:
Hydrodynamics, radiation transfer, 
thermodynamics, chemical reactions.
Large finite difference methods, on 
regular spatial grids.
Short- to medium-length FFTs are used, 
although these may be replaced in 
future.

Current state-of-the-art:
Atmosphere: 1.4 horizontal deg spacing, 
with 26 vertical layers.
Ocean: 1 degree spacing, with 40 
vertical layers.
Currently one simulated day requires 
140 seconds on 208 CPUs.

Future requirements: 
800-1000X current requirements.

Graphic:  G. Meehl, J. Arblaster, et al 
(NCAR)



Fusion Reactor Simulations

Regular and irregular access computations. Graphic: S. Jardin, et al (PPPL)
Adaptive mesh refinement.
Advanced nonlinear solvers for stiff PDEs.
Current:  230 Gbyte memory, 1.3 hours on 1 Tflop/s system (larger 
problems require 8 hours).
Future:  576 Tbyte memory, 160 hours on 1 Pflop/s system.
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Astrophysics Simulation and 
Data Analysis

Multi-physics and multi-scale phenomena.

Large dynamic range in time and length.

Requires adaptive mesh refinement.

Dense linear algebra.

FFTs and spherical harmonic transforms.

Supernova simulation:
Future 3-D model calculations will require 1,000,000 
CPU-hours per run, on 100 Tflop/s peak system.

Analysis of cosmic microwave background data:
WMAP (now) 3x1021 flops, 16 Tbyte mem
PLANCK (2007) 2x1024 flops, 1.6 Pbyte mem
CMBpol (2015) 1x1027 flops, 1 Ebyte mem

Graphic:  T. Mezzacappa, J. 
Blondin, K.-L. Ma, et al (ORNL)



Characteristics of 21st Century 
Scientific Computing

Advanced algorithms, data structures and computational 
techniques:  

FFTs.
Dense and sparse linear algebra.
Iterative solvers.
Multigrid.
Dynamic data structures.
Adaptive mesh refinement.
Sophisticated computer graphics and visualization facilities.
Large-scale data management facilities.

State-of-the-art calculations require highly parallel computers:
Enormous computational requirements are common.
1000+ CPUs are used in many calculations.
Sophisticated parallelization techniques are often required.

A pragmatic attitude prevails:  “If it works, use it.”
Several widely used numeric algorithms lack formal proofs.



Experimental Mathematics

“Experimental mathematics” means the application of modern 
computer technology in mathematical research – a merger 
of computer science and mathematics:
Gaining insight and intuition.
Discovering new patterns and relationships.
Studying underlying principles using graphics and visualization.
Testing (and often falsifying) conjectures.
Exploring a result to see if it is worth formal proof.
Suggesting approaches for formal proof.
Performing derivations (and checking hand derivations).
Confirming analytically derived results.

Mathematics is a latecomer to the world of scientific computing, but with the 
recent advent of powerful mathematical software, it is rapidly gaining 
ground on fields such as physics and chemistry.



Computational Methods Used in 
Experimental Math

High-precision computation (typically hundreds of digits or more).
PSLQ and other integer relation finding algorithms.
Symbolic computation.
Fast Fourier transforms (FFTs).
Linear and polynomial regression.
Dense and sparse linear algebra.
Evaluation of definite integrals and infinite series sums.
Highly parallel computing.
Sophisticated computer graphics and visualization facilities.

Except for the first three, all are staples of modern high-performance 
scientific computing.



Some Supercomputer-Class 
Experimental Math Computations

Identification of B4, the fourth bifurcation point of the logistic iteration. 
Integer relation of size 121; 10,000-digit arithmetic; 25 hours CPU time.

Identification of Euler-zeta sums.
Hundreds of integer relation problems of size 145; 5,000-digit arithmetic; 
many hours CPU time.

Finding relation involving root of Lehmer’s polynomial.
Integer relation of size 125;  50,000-digit arithmetic; 16 hours on 64 
CPUs.

Numerical verification of a mathematical physics integral identity.
1-D quadrature calculation; 20,000-digit arithmetic; 45 min on 1024 CPUs.

Numerical evaluation of Ising theory integrals.
3-D quadrature of a very complicated function; 500-digit arithmetic;18 
hours on 256 CPUs.

Ref: Papers by D. H. Bailey, D. Broadhurst, J. M. Borwein, R. E. Crandall and R. Girgensohn.



LBNL’s High-Precision Software 
(ARPREC and QD)

Low-level routines written in C++.
C++ and F-90 translation modules permit use with existing programs 
with only minor code changes.
Double-double (32 digits), quad-double, (64 digits) and arbitrary 
precision (>64 digits) available.
Special routines for extra-high precision (>1000 dig).
Includes common math functions:  sqrt, cos, exp, etc.
PSLQ, root finding, numerical integration.
An interactive “Experimental Mathematician’s Toolkit” employing this 
software is also available.

Available at:  http://www.experimentalmath.info



The PSLQ Integer Relation 
Algorithm

Let (xn) be a vector of real numbers.  An integer relation algorithm finds 
integers (an) such that 

At the present time, the PSLQ algorithm of mathematician-sculptor 
Helaman Ferguson is the best-known integer relation algorithm.  
PSLQ was named one of ten “algorithms of the century” by 
Computing in Science and Engineering.

High-precision arithmetic software is required:  at least d x n digits, 
where d is the size (in digits) of the largest of the integers ak.

Refs:
1. H. R. P. Ferguson, D. H. Bailey and S. Arno, “Analysis of PSLQ, An Integer Relation 

Finding Algorithm,” Mathematics of Computation, vol. 68, no. 225 (Jan 1999), pg. 
351-369.

2. D. H. Bailey and D. J. Broadhurst, “Parallel Integer Relation Detection: Techniques 
and Applications,” Mathematics of Computation, vol. 70, no. 236 (Oct 2000), pg. 
1719-1736.



The BBP Formula for Pi

In 1996, a computer program running the PSLQ algorithm 
discovered this formula for pi:

This formula permits one to directly calculate binary or hexadecimal 
(base-16) digits of pi beginning at an arbitrary starting position n, 
without needing to calculate any of the first n-1 digits.

This formula is now used in the G95 compiler.

Ref: D. H. Bailey, P. B. Borwein and S. Plouffe, “On the Rapid Computation of Various 
Polylogarithmic Constants,” Mathematics of Computation, vol. 66, no. 218 (Apr 1997), pg. 
903-913.



Some Other Similar BBP-Type 
Identities

Ref: Papers by D. H. Bailey, P. B. Borwein, S. Plouffe, D. Broadhurst and R. E. Crandall.



A Connection Between BBP 
Formulas and Normality

A real number x is "b-normal" or "normal base b" if every m-long string of digits 
appears in the base-b expansion of x with frequency 1/bm (i.e. with the frequency 
expected in a random sequence).  A long-standing unsolved problem of 
mathematics is to prove that pi, e, log(2), sqrt(2), etc are normal (to any base).

Let {t} denote the fractional part of t, and consider the sequence x0 = 0, and

Theorem: log(2) is 2-normal if and only if this sequence is equidistributed in the unit 
interval.

In a similar vein, consider the sequence x0 = 0, and

Theorem: Pi is 2-normal if and only if this sequence is equidistributed in the unit 
interval.
Ref: D. H. Bailey and R. E. Crandall, “On the Random Character of Fundamental Constant 
Expansions,” Experimental Mathematics, vol. 10, no. 2 (Jun 2001), pg. 175-190.



A Class of Provably Normal 
Constants

We have also shown that an infinite class of mathematical constants is 
normal, including

This was proven 2-normal by Stoneham in 1971, but we have extended this 
result to the case where (2,3) are any pair (p,q) of relatively prime integers.  
We also extended to an uncountably infinite class [here rk is the k-th bit of r]:

Ref: D. H. Bailey and R. E. Crandall, “Random Generators and Normal Numbers,”
Experimental Mathematics, vol. 11, no. 4 (2002), pg. 527-546.



Normal Numbers as 
Pseudorandom Generators

An effective and efficient pseudo-random number generator can be 
formulated based on the binary digits of a2,3, as follows:

First select a starting index a between 333 + 100 = 5.559 x 1015 and 253 = 
9.007 x 1015.  The value of a can be thought of as the "seed" of the 
generator.  Calculate

Successive iterates can be generated as

Normalizing this sequence by 333 produces a sequence of 64-bit IEEE 
floats in the unit interval, which are in fact successive 53-bit sections of 
the binary digits of a2,3 (within a certain range). 

The resulting scheme runs at rate equivalent to that of a conventional 
linear-congruential pseudorandom generator.



Recent PSLQ Results:
Apery-Like Sum Identities

Ref: D. H. Bailey, J. M. Borwein and D. M. Bradley, “Experimental Determination of Apery-Like 
Identities for Zeta(2n+2),” Experimental Mathematics, to appear.

The following identities were recently found using integer relation methods:



Tanh-Sinh Numerical Quadrature

Given f(x) defined on (-1,1), substitute x = g(t), where g(t) = tanh(sinh t):

where xj = g(hj) and wj = g’(hj).   

Because g’(t) goes to zero rapidly for large t, the product  f(g(t)) g’(t) usually 
is a nice bell-shaped function, even in cases where f(x) has a vertical 
derivative or blow-up singularity at an endpoint.  For such functions, the 
Euler-Maclaurin formula implies that the error in this approximation 
decreases very rapidly with h.

This scheme often achieves quadratic convergence – reducing h by half 
produces twice as many correct digits.



Application of High-Precision 
Tanh-Sinh Quadrature

This arises from analysis of volumes 
of ideal tetrahedra in hyperbolic 
space.  This "identity" has now been 
verified numerically to 20,000 digits, 
but no proof is known.

Ref: D.H. Bailey, J.M. Borwein, V. Kapoor and 
E. Weisstein, “Ten Problems in Experimental 
Mathematics,” Am. Math. Monthly, Jun 2006.



Box Integrals

Spurred by a question posed in Jan 2006 by Luis Goddyn of SFU, we 
examined some integrals of the form:

The following evaluations are now known:

where

Ref: D. H. Bailey, J. M. Borwein and R. E. Crandall, “Box Integrals,” Journal of Computational 
and Applied Mathematics, to appear. 



Ising Integrals

We recently applied our methods to study some integrals that arise in the 
Ising theory of mathematical physics:



Computing and Evaluating Cn

where K0 is the modified Bessel function.  

We used this formula to compute 500-digit numerical values of various 
Cn, from which these results and others were found (and subsequently 
proven):

Richard Crandall showed that the multi-dimensional Cn integrals can be 
transformed to 1-D integrals:



Limiting Value of Cn

Cn appear to approach a limit:

What is this limit?  We pasted the first 50 digits of this numerical value into 
the Inverse Symbolic Calculator tool, available at
http://oldweb.cecm.sfu.ca/projects/ISC/ISCmain.html

The result was:

where gamma denotes Euler’s constant.  In fact, we have now proven:



Other Evaluations



The Ising Integral E5

We were able to reduce E5, which is a 5-D integral, to an extremely 
complicated 3-D integral (see below).

We computed this integral to 250-digit precision, using a parallel high-
precision 3-D quadrature program.  Then we used a PSLQ program to 
discover the evaluation given on the previous page.



Recursions in Ising Integrals

Consider this 2-parameter class of Ising integrals:

After computing 1000-digit numerical values for all n up to 36 and all k up to 
75 (a total of 2660 individual quadrature calculations), we discovered (using 
PSLQ) linear relations in the rows of this array.  For example, when n = 3:

Similar, but more complicated, recursions were found for larger n (next page).



Experimentally-Found 
Recursion for n = 24



General Recursion Formulas

We were able to find general recursion formulas for each n:



Compact Recursion Formulas

Let cn,k = n! k! 2-n Cn,k and let M be the largest integer in (n+1)/2.  We found 
(using high-precision polynomial regression) that all of these recursions 
can be written in the compact form

for certain relatively simple polynomials pn,i(x).  Here are the polynomials 
for n = 5 and n = 6: 



Polynomials pn,i(x) for i = 1,2



Polynomials pn,i(x) for i = 3,4,5,6



Closed Forms for pn,i(x)

Can we extend these results for i > 2?  This is currently under investigation.

For further details, see:
1. D. H. Bailey, J. M. Borwein and R. E. Crandall, “Integrals of the Ising Class,” Journal of 

Physics A: Mathematical and General, to appear.
2. D. H. Bailey, D. Borwein, J. M. Borwein and R. E. Crandall, “Hypergeometric Forms for Ising-

Class Integrals,” Experimental Mathematics, to appear.
3. D. H. Bailey, J. M. Borwein and R. E. Crandall, “Finding General Explicit Formulas for Ising

Integral Recursions,” manuscript (work in progress).
Preprints are available at http://crd.lbl.gov/~dhbailey/dhbpapers.



Experimental Math as a Branch of 
21st Century Scientific Computing

Advanced numerical algorithms and computational techniques:
High-precision computation (typically hundreds or thousands of digits).
PSLQ and other integer relation finding algorithms.
Symbolic computation.
Fast Fourier transforms (FFTs).
Linear and polynomial regression.
Dense and sparse linear algebra.
Evaluation of definite integrals and infinite series sums.
Sophisticated computer graphics and visualization facilities.

State-of-the-art calculations require highly parallel computers:
Enormous computational requirements are common.
1000+ CPUs are used in many calculations.
Sophisticated parallelization techniques are often required.

A pragmatic attitude prevails:  “If it works, use it.”
Several widely used experimental math algorithms lack formal proofs.



The Appeal of Experimental Math

Experimental math is accessible.
Much is readily understandable to persons with only modest 
mathematical backgrounds.

Experimental math is multidisciplinary.
Computer scientists, numerical analysts, mathematicians and 
physicists have all made significant contributions.

Experimental math excites the younger, computer-savvy 
generation.

Students (both in math and computer science) with good 
programming skills can do real publishable research.

Experimental math is an excellent tool for student learning.
With a few experiments, students can “see” what’s happening.
Computer graphics and plots are particularly useful.
Student versions of Mathematica and Maple are now available at 
very reasonable prices.



Books on Experimental 
Mathematics

Vol. 1: Mathematics by Experiment: 
Plausible Reasoning in the 21st 
Century

Vol. 2: Experiments in Mathematics: 
Computational Paths to Discovery

Authors: Jonathan Borwein, DHB and 
(for vol. 2) Roland Girgensohn.

Coming soon:  Experimental Mathematics in Action.
Authors: David Bailey, Jon Borwein, Neil Calder, Roland Girgensohn, 
Russell Luke and Victor Moll.

New: Both books are now available on CD-ROM in a hyperlinked, 
searchable PDF format.  Also, a FREE condensed version is available at: 
http://www.experimentalmath.info
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